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ABSTRACT 
The Unobserved Components Models represent a framework in which phenomena like 
any periodic behaviour, economic cycles in particular, may be modelled and forecast 
naturally. The main distinct feature of the methodology used in this paper is the use of a 
Dynamic Harmonic Regression model, characterised by time variable parameters that 
may vary following a rich family of models. This class of models are set up in a State 
Space context that takes advantage of the extraordinary flexibility of the recursive 
algorithms known as the Kalman Filter and Fixed Interval Smoother. Different versions 
of the models have to be applied to time series, depending on their time properties. In 
particular, time series with a non-constant period cycle has to be analysed in a totally 
different way to other series that exhibit a constant period cycle. A simple method to 
extract the cyclical information from the series in the case of non-constant period cycles 
is presented in the paper. The methodology is compared with others and shown working 
in practice with several examples. 

 
Key words: Hodrick-Prescott filter, Integrated Random Walk, Kalman Filter, Fixed 
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1. INTRODUCTION 

It was long time ago when the necessity of extracting basic unobserved signals from 
observed time series appeared. One interesting aspect of such an special analysis of time 
series was the possibility to follow the underline evolution of variables independently of 
all kind of short run variations, such as seasonal patterns or outlier observations. In this 
regard, the study of trends, cycles and seasonal components (or alternatively 
seasonality-adjustment) have been the goals of many researchers worldwide. 

Regarding the analysis of the economic cycles, a great deal of confusion has 
appeared in the literature since the initial studies about the topic. The important work of 
Burns and Mitchell (1946) “Measuring the Business Cycles” may be considered an 
initial step in the direction of the empirical evaluation of this matter. However, it was 
criticised by important researchers, like Koopmans (1947), mainly because it presented 
“measurement without theory”. Nevertheless, Kydland and Prescott (1990) argued that 
while the criticism is acceptable, hypothesis about the statistical distributions of 
variables should not be done based on the Economic Theory. 

These are examples of the widely accepted inherent subjectivity of this topic. 
While the distinction between trend and cycle is somewhat problematic from a 
theoretical point of view, however, the empirical definition is quite transparent if it is 
provided in the frequency domain and using Unobserved Components (UC) models. 

When dealing with obtaining empirical measures of the economic cycle, the 
confusion is complex, because the lack of consensus about the definition of the 
economic cycle has motivated the appearance in the literature of a variety of very 
different methods. Some of the most typical are linear or polynomial trends; 
differentiation; application of moving average filters; Hodrick-Prescott (HP) filter; non-
parametric estimates; etc. Due to the rather different nature of each of these procedures 
the estimated cyclical components for the same series have very different properties. 

Burns and Mitchell made very important contributions to the problem that have 
been blurred by posterior discussions between theorists and practitioners. These basic 
contributions are the definition of the different phases of the cycle and its characteristics, 
but above all and from the point of view of the present paper, the explicit delimitation of 
the bandwidth of interest in order to provide a clear definition of the cycle (such 
bandwidth in their original work was between 18 and 120 to 144 months). 

This paper presents a new UC methodology for the analysis of the economic cycle 
very successful in the past when applied to a wide range of time series. In addition, a 
general method for obtaining an estimation of the cycle based on a frequency domain 
approach is proposed. This method consists of the application of a band-pass filter to 
the series in which the bandwidth is defined by the user depending on his/her particular 
definition of the cycle. This filter is effectively built as a simple UC model within this 
new class applied twice to the series and is closely related to the HP filter. 



3 

2. THE DIVERSITY OF UNOBSERVED COMPONENTS MODELS 

The UCM are models in which the time series are decomposed as the sum or a product 
of a number of other simple time series with economic or physical meaning. One widely 
accepted univariate version of UCM is 

 ttttt eSCTy +++=  (1) 

where ty  is the observed time series; T t  is a trend or low frequency component; C t  is a  
sustained cyclical or quasi-cyclical component (e.g. an economic cycle) with period 
different from that of any seasonality in the data; S t  is a seasonal component (e.g. 
annual seasonality); and et  is an ‘irregular’ component, normally defined for analytical 
convenience as a normally distributed Gaussian sequence with zero mean value and 
variance σ 2 . In order to allow for nonstationarity in the time series yt , the various 
components in the model, including the trend T t , can be characterised by stochastic, 
Time Variable Parameters (TVP’s), with each TVP defined as a nonstationary stochastic 
variable, as discussed below. 

While most researchers in the area would agree basically with the general 
formulation of the problem given by equation (1), the agreement ends just there. There 
are an endless amount of  ‘philosophical’ and  practical details in such a formulation 
that produces a big amount of alternative methodologies. 

From all the methods available nowadays, one of the oldest and best known 
techniques, in essence better known as a seasonal adjustment method, is the X-11 and 
extensions i.e. X-11 ARIMA and X-12 ARIMA (see e.g. Findley et al., 1996). Due to 
the fact that it has been the main method of trend estimation and seasonal adjustment 
used by Government Agencies all over the World, it has been applied mainly to 
macroeconomic monthly, quarterly and annual data. This is a rather ad-hoc method of 
seasonal adjustment in which smoothing procedures are used to extract trend and 
seasonal components from the time series. The design of these filters is based mainly on 
previous experience and they have been continuously refined as the method has been 
applied to more and more series. One of the most important limitations is its ad-hoc 
nature, forcing a continuos refinement as the method is applied to more time series. 

Some deterministic optimisation methods have been proposed for signal 
extraction. These are considered from a variety of different standpoints such as 
regularisation (e.g., Hodrick and Prescott, 1980, 1997; Akaike, 1980) where constraints 
are imposed on the state estimates via a Lagrange Multiplier term within the cost 
function, in order to ensure that they possess the required characteristics. More 
specifically, the variance of residuals is usually minimised subject to a given degree of 
smoothness imposed on the components, as defined by specified weighting matrices in 
the Lagrange Multiplier term of the cost function. The values of Lagrange Multipliers are 
estimated in different ways, such as cross validation, but Akaike estimates them within a 
Bayesian framework. Other alternative standpoints for deterministic optimisation 
methods are ‘smoothing splines’; ‘smoothing kernels’; ‘pseudosplines’ and ‘wavelet’ 
methods. 
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There are two additional families of methods that have received a lot of attention, 
especially among economists. These are the Structural form and the Reduced form 
methods, following the analogy with the Simultaneous Equations models typical of 
Econometrics. If each of the components in equation (1) are assumed to follow ARIMA 
models (these are the structural form of the components), then the overall model, or 
reduced form, has to be another ARIMA of certain orders depending on the individual, 
structural, models. This two families have been viewed usually as competitors, given the 
radically different starting point of view. 

In Structural form methods the UC model is considered as the observation 
equation of a discrete time stochastic State Space (SS) model and the associated state 
equations are used to model each of the components in Gauss-Markov form. This 
formulation has its origin in the the 1960’s when control engineers realised that recursive 
estimation and, in particular, the Kalman Filter, could be applied to the problem of 
estimating time variable parameters in regression models, usually within a dynamic 
systems context. More recent developments have shown how this approach can be 
extended in various ways to problems of forecasting, backcasting, smoothing (by means 
of the recursive Fixed Interval Smoothing) and signal extraction.  

Here, the most influential contributions are probably those of Harvey, whose 
Structural Model approach is now widely available in the successful STAMP computer 
programme (Structural Time Series Analyser, Modeller and Predictor: see Koopman et 
al, 1995; Harvey, 1989); and the Bayesian approach by Harrison and West, implemented 
in the Bayesian Analysis of Time Series programme (BATS: see Pole et al., 1995; West 
and Harrison, 1989). 

The Reduced Form approach to UC model identification and estimation follows 
from the success of Box-Jenkins methods of time series analysis and forecasting (Box 
and Jenkins, 1970; Box et al., 1994). It is assumed that the series can be modelled as an 
ARIMA model (or reduced form) and find the structural models for the n individual 
components through a process of identification, i.e. 
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where B is the backward-shift operator; ( )Bϑ  and ( )Bφ  are general MA and AR 
polynomials of order q and p identified and estimated a la Box-Jenkins1; each of the 

                                                   

1 The term general is used here in the sense that MA and AR polynomials may, and in most cases 
will, be the result of a product of regular and seasonal polynomials. Also, the AR polynomial here contains 
all the unit roots in the model included by differencing in order that the process at hand may be treated as 
mean stationary. 
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( )Biϑ  and ( )Biφ  are unknown polynomials which orders would depend on the nature 
of each of the components2 and the q and p orders of the overall ARIMA model. 

From the previous formulae, it is obvious to see that there exist an infinite number 
of structural forms compatible with each reduced form. Therefore, an identification 
process is necessary in order to find a satisfactory solution to the problem. Such process 
relies on the imposition of a number of arbitrary constraints to ensure existence and 
uniqueness of the decomposition. Many different ways to achieve this goal have been 
proposed in the literature, being the most popular the ‘canonical decomposition’ by 
which the variance of the irregular component is maximised in order to obtain 
components as free from noise as possible (Hillmer et al., 1983). However, this is not 
the unique method, other less popular are e.g. the ‘formal decomposition’ and the 
‘statistical decomposition’ (see Piccolo, 1982). A full methodology that takes advantage 
of the canonical decomposition is implemented in the software package known as 
Signal Extraction in ARIMA Time Series (SEATS, Gómez and Maravall, 1998). 

The new methodology introduced in this paper falls into the Structural class of 
models, but with novel aspects discussed below, like new methods of estimation that 
takes advantage of the exceptional spectral properties of the Dynamic Harmonic 
Regression (DHR) model (see e.g. Ng and Young, 1990; Young et al., 1999). Such a 
methodology has been implemented in a software package, the multi-platform, 
CAPTAIN Time Series Analysis and Forecasting Toolbox in Matlab3 (and its 
predecessor the MS-DOS based microCAPTAIN program). 

 

3. THE STRUCTURAL UNOBSERVED COMPONENTS TIME SERIES MODEL 

In the Structural framework, (1) is considered as the observation equation in discrete-
time (possible continuous-time of discrete differential) Non Minimal State Space model 
which describes the stochastic evolution of state variables associated with the UC’s in 
(1). The SS form is an extraordinarily powerful and flexible tool for time series analysis, 
as it will be clear in the next pages. It is also a framework in which the UC type of 
models fits naturally.  

The SS formulation is described by the following state and observation equations: 

 
State Equations            :     

Observation Equation  :     

x Fx

H x
t t -1

t t

= +
= +

ηη t

t ty e
 

                                                   

2 For example the trend model would incorporate the unit roots in the overall model; the seasonal 

component would include the seasonal roots; and so on. 

3 Information about this software is available in http://cres1.lancs.ac.uk/captain/ and a beta-test version is 

available from the author. 
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where x t  is an n dimensional state vector; yt  is the scalar observed variable; ηη t  is an n 
dimensional vector of zero mean, white noise inputs (system disturbances) with 
diagonal covariance matrix Q  and et  is the white noise variable in equation (1), which is 
assumed to be independent of ηη t . F H t and  are, respectively, the nxn state transition 
matrix and the 1xn observation vector, which relates the state vector x t  to the scalar 
observation yt . 

Given this form for the overall model, the well-known Kalman Filter and the 
associate recursive Fixed Interval Smoothing algorithm provide the basis for forecasting, 
interpolating and smoothing (that is, estimate the components). For a data set of N 
samples, the former algorithm yields a ‘filtered’ estimate of the state vector at every 
sample t, based on the time series data up to sample t. The later produces a ‘smoothed’ 
estimate of the states which, at every sample t, is based on all N samples of the data. 
This means that, as more information is used in the later estimate, its Mean Square Error 
cannot be greater than the former. As these algorithms are discussed in detail in the 
previous references, we will not pursue the topic further. 

These algorithms allow inherently for missing data and provide automatic 
forecasting, interpolation and backcasting. The off-line FIS algorithm is particularly 
useful for interpolation, signal extraction, seasonal adjustment and lag-free TVP 
estimation. Also it is useful in the so call ‘variance intervention’ for handling sudden 
changes in the trend level. 

Previous to the application of these algorithms, variances of all the noises ηη t  and 

te  (often called hyper-parameters) present in the model must be known or estimated in 
some way. A usual way to deal with the problem is to formulate it in Maximum 
Likelihood (ML) terms (e.g. Harvey, 1989). Assuming that all the disturbances in the 
state space form are normally distributed, the ML function can be computed using the 
Kalman Filter via ‘prediction error decomposition’. This is the generally accepted 
method, because of his well-known theoretical basis. However, the optimisation can be 
very complex even for relative simple models due to the flatness around the optimum 
(Young et al., 1999).  

There are several alternatives to ML, from which the one preferred here is built in 
the frequency domain  (Young et al., 1999). Basically, the parameters are estimated so 
that the logarithm of the model spectrum fits the logarithm of the empirical pseudo-
spectrum (either an AR-spectrum or periodogram) in a least squares sense. Such 
method provides the estimation of a ‘noise variance ratio’ matrix (NVR), instead of the 
variances in the SS model. This NVR matrix is defined as the ratio of the state noise 
covariance matrix to the variance of the observation equation noise i.e. NVR Q / 2= σ . 
Since Q  is assumed diagonal, it is common to speak about the NVR parameters, 
referring to the diagonal elements of the NVR  matrix. 

In the UC context all the components in (1) has to be represented in SS form, and 
then an overall SS form for the whole model  is built by the assembly of the individual 
models.  

Very often, the Generalised Random Walk (GRW) is the preferred model for the 
trend, given by 
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Here, α β γ,  ,  and are constant parameters; Tt  is the trend component (i.e. the first 
state, x t1 ); x t2  is a second state variable (generally known as the ‘slope’); 
η η1 2t t and are zero mean, serially uncorrelated white noises with constant block 
diagonal covariance matrix Q . 

This model includes, as special cases, the Random Walk (RW: α = 1; β γ= = 0 ; 
η2 0t = ); Smoothed Random Walk ( 0 1< <α ; β γ= = 1; η1 0t = ); the Integrated 
Random Walk (IRW: α β γ= = = 1 ; η1 0t = ); the Local Linear Trend (LLT: 
α β γ= = = 1 ); and the Damped Trend (α β= = 1; 0 1< <γ ). In the case of the IRW, 
x t1  and x t2  can be interpreted as level and slope variables associated with the variations 
of the trend, with the random disturbance entering only via the x t2  equation. 

With respect to periodic components (either cyclical or seasonal) there are many 
different alternatives quoted in the literature. The main ones are the Dummy 
Seasonality; the Trigonometric Cycle or Seasonality (West and Harrison, 1989; Harvey, 
1989); the Dynamic Harmonic Regression (DHR: Ng and Young, 1990; Young et al., 
1999); the Modulated periodic components (Young et al., 1999); and the General 
Transfer Function model (Ng and Young, 1990). 

From all the above, the DHR option is the one prefered in this paper. The DHR 
model has a linear regression form with deterministic periodic functions of time as 
inputs with TVP that follow GRW models. The SS form for this option is 
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where b ft  are parameters defined in the same way as a ft . The rigidity introduced by the 
deterministic functions is compensated by the TVP giving the model a great flexibility, 
capable of represent many types of different seasonal patterns. This is extremely useful 
for series which exhibit the kind of non-stationarity behaviour in the seasonal 
component so commonly observed in economic time series.  

4. THE ANALYSIS OF CYCLES USING STRUCTURAL UCM 

Two particular versions of the models shown above are especially relevant for the 
research of cycles in time series. These are (i) a single IRW trend and (ii) a model that 
includes an IRW trend and a DHR model for the cyclical and/or seasonal part. The 
selection between these two models and the advantages of each of them depend on the 
properties of the time series and the objectives of the analysis, as illustrated below. 

It is obvious that the objective of producing forecasts of the time series (or the 
cyclical component) into the future is much more complicated than analysing the peaks 
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and troughs of the economic cycle into the past. For the present author, analysing and  
forecasting are two distinct objectives that may be treated separately in this context in 
the sense that a valid model for the analysis of the periodicities of the data in the past do 
not necessarily has to be a good model for forecasting the series into the future. 
However, a valid model in forecasting terms may be also valid for the analysis of the 
economic cycle inside the estimation sample. In addition to this, forecasting is also 
considerably more complicated for series that exhibit a non-constant period cycle, than 
for those series with a constant period cycle, and models used should reflect these 
features of the data. 

Based on the previous considerations, the rest of this section is devoted to the 
analysis of two different scenarios, illustrated with time series that show the power of 
the UC models. The first scenario is a time series with a constant period for which a 
model may be built and it, in general, will be useful both for the ‘structural analysis’ and 
for forecasting objectives. The second scenario is one in which the series is somewhat 
more complicated, because the period of the cycle is time varying, in this case the 
‘structural analysis’ of the cycle is relatively simple, but forecasting is far more 
complicated. 

4.1. Cyclical components with a constant period. 

The monthly aggregated electricity consumption in Spain from January 1971 to April 
2000 in KW per hour is shown in figure 1 and is used here in order to exemplify the 
results obtained with a number of methodologies. These models are DHR; the Basic 
Structural Model (BSM) of Harvey; and an ARIMA model (in which the estimation of 
components is carried out using the canonical decomposition given in  Gómez and 
Maravall, 1998). 

The series reveals the nonstationarity behaviour in the mean and variance, the 
amplitude of which seems more important in the middle of the series. Pre-processing of 
the data in BSM and ARIMA methodologies are compulsory in these circumstances. In 
order to implement ML estimation in the BSM model, the logarithmical transformation 
was done. Apart from this, a regular and seasonal difference has to be done previous to 
the application of the ARIMA methodology. However, DHR models are able to avoid 
any pre-judgement of this kind by modelling and forecasting the basic data without any 
transform at all. In this way the DHR model explains the nonstationarity in both the 
mean and the variance of the original data, instead of removing such problems. 
However, in order to facilitate comparisons among the methods considered, the series is 
also logarithmically transformed for DHR modelling. 

(INSERT FIGURE 1) 

The standard identification tools suggest an ARIMA ‘airline’ model for the 
logarithmically transformed series (i.e. ARIMA ( ) ( )0 11 0 11

12
, , , ,× ). On the other hand, the 

identification in the frequency domain, necessary for the DHR analysis, reveals the 
existence of the trend and a clear seasonal pattern in the series confirmed by the AR 
spectral estimates, with visually significant peaks at periods of 12, 6, 4, 3, 2.4 and 2 
months. 



9 

DHR models were estimated in the frequency domain using the CAPTAIN Matlab 
version (Young et al., 1999); BSM models were estimated by ML implemented in 
STAMP (Koopman et al, 1995); and ARIMA models were estimated by Exact ML 
using SEATS (Gómez and Maravall, 1998). Table 1 exhibits some relevant comparisons 
among the innovations obtained by the models. In particular, it shows the estimated 
models for the logarithmically transformed data in terms of the variance of the 
innovations; the Ljung-Box autocorrelation test for 12 and 24 lags; and the Jarque-Bera 
normality test4. 

The immediate conclusion extracted from table 1 is that the DHR model 
outperforms in statistical sense the other two methodologies. This is specially 
interesting, because the DHR model is optimised in the frequency domain, while BSM 
and ARIMA are both estimated in the time domain. It is surprising in the sense that ML 
criterion is defined as an explicit, time domain function of the normalised innovations, 
whereas optimisation in the frequency domain, is primarily concerned with ensuring that 
the spectral properties of the estimated components match the empirical spectrum of the 
data.  

 DHR Model Basic Structural Model ARIMA 

ˆ σ a
2

 0.58e-03 0.64e-03 0.86e-03 

Q(12) 13.98 16.89 14.24 

Q(24) 22.79 29.69 25.46 

Jarque-Bera 0.06 
(0.96) 

1.14 
(0.56) 

0.53 
(0.76) 

Table 1: Innovations variance, Ljung-Box and Jarque-Bera normality tests of some 
models for the electricity consumption series in Spain. 

Due to convergence problems arising in ML estimation for BSM models when 
individual hyper-parameters are estimated for each harmonic in the seasonal 
component, it is a common practice to constrain all of them to a single parameter. It is 
the case of the STAMP and other similar computer programs (see e.g. Koopman et al., 
1995; Pole et al, 1995). This may be one reason explaining the superiority of the DHR in 
frequency domain seen in table 1. The DHR model effectively has a higher number of 
parameters. Nevertheless, the computational burden of such estimation is less important 
than in time domain for BSM and ARIMA models, provided the spectral peaks are well 
defined, as it is the case of most seasonal economic data. There are also advantages in 
forecasting terms, but these are discussed later5. 

                                                   

4 These statistics are estimated consistently by the author based on the innovations extracted from the 

respective software packages, instead of using the statistical output of each package, in order to ensure the 

comparability of results. 

5 Results similar to the ones presented here can be found in Young et al. (1999) for the well-known airline 

passengers time series in the US in Box and Jenkins (1970). 
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The signal extraction exercise reveals rather nicely another feature in the series that 
is hardly distinguishable in the original raw data; namely the fact that the trend appears 
to include a long period cycle of just over ten years which is, presumably, related to the 
economic cycle (see the estimated trend in figure 1). Such cyclical behaviour is also clear 
by means of the trend derivatives, a variable that has been used commonly for the 
analysis of the so called “underlined growth”. Figure 2 shows the derivatives of IRW, 
LLT and ARIMA trends obtained by the three methodologies discussed above. It seems 
clear that the trends other than IRW are very dangerous in the analysis of the underlined 
growth because of the high level of noise. On the other hand, the smoothness of the 
IRW trend supports the existence of an approximately constant period cycle of about 
four years in the AP series. 

(INSERT FIGURE 2) 

The cyclical component detected may be included into the model in several ways, 
but the option chosen here is the one already exploited in Young et al. (1999). It consists 
of obtaining a better estimate of the spectrum at the low frequencies relating to the cycle 
by means of a higher order AR spectrum. An AR(120) spectrum shows a clearly defined 
peak in the spectrum at a fundamental period of about 126 months, with two other 
peaks at 60 and 37 months, which will be recognised as approximate harmonics of this 
fundamental period. Simply by concatenating the original AR(18) and the new AR(120) 
spectra, using the higher order AR spectrum to define the lower frequency cyclical band 
of the spectrum, and the lower order AR spectrum to specify the higher frequency 
seasonal behaviour, the model including the cycle can be estimated in the frequency 
domain. The resulting AR-spectrum is shown in figure 3. 

(INSERT FIGURE 3) 

In order to compare the forecasting results, four models are used. These are the 
three models shown in table 1 and a DHR model that incorporates periodic components 
at the frequencies of the long term cycle. 

A rolling experiment was performed in order to make forecasting comparisons. 
The last six years of data were reserved for the comparative study. The four models were  
estimated and used to obtain up to 24 step-ahead forecasts. The process is repeated, 
expanding the sample by one observation at each step. The results of this exercise are 
shown in figure 4, where the mean, minimum, maximum and standard deviations of the 
Mean Absolute Percentage Error (MAPE) are plotted as a function of the forecast lead 
time. The thick solid lines show the results for the DHR model including the economic 
cycle; the thin solid line represent the simpler DHR model; the dotted lines represent the 
results for the BSM model; and the dashed lines show the ARIMA results. 

(INSERT FIGURE 4) 

It is clear that the two DHR model forecasts, with and without the cyclical 
component, are both  significantly better than those obtained using BSM and ARIMA 
over the range of forecast lead times. Moreover, the superiority of the DHR model 
results increases substantially as the forecast horizon increases, especially in the case of 
the improved DHR model.  
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4.2. Cyclical components with a non-constant period. 

All the models discussed in the previous subsection are set up for time series which 
exhibit a constant period cycle. It is obvious that those models are strictly incorrect 
when such assumption is not fulfilled and the specification error would be more serious 
when the cyclical component is relatively more important with respect to the rest of 
components. 

It seems surprising that the type of models in the previous sections have been used 
by qualified analysts for time series which irregularity of the periodic behaviour is 
widely acknowledged. From the point of view of the current authors, such analysis may 
be dangerous, especially when used for forecasting purposes, but not necessarily for the 
structural analysis of the cycles. 

Typical examples of the above problem are the US National Accounts quarterly 
time series, that have been used systematically for the analysis of the economic cycle 
from very different theoretical and practical points of view, both for the analysis of the 
economic cycle itself or for the detection of co-movements among variables coherent 
with some theoretical dynamic macroeconomic models. In a significant amount of these 
studies, the Hodrick-Prescott filter (HP; see Hodrick and Prescott, 1980, 1997) plays a 
central role as a mean to obtain the periodic components of the series. 

Two most interesting procedures for the estimation of cyclical components for the 
US GNP series taken from the literature are: 

a) Definition of the economic cycle as the perturbation around a HP trend, that is 
effectively a rather simple UCM (see below).  

b) UCM that includes explicitly a cyclical component, in addition to the trend 
(Koopman et al., 1995). 

Although option b) seems a more comprehensive model because of the specific 
inclusion of the cycle in the model, the cyclical component is effectively estimated once 
more as the difference between the series and a HP trend. This is a consequence of the 
blind Maximum Likelihood estimation process in which the period of the cyclical 
component and the rest of hyper-parameters are estimated jointly. To be exact, when 
Harvey’s BSM was estimated for the logarithmically transformed US GNP series (from 
the second quarter of 1948 to the second quarter of 1998) the optimum was found with 
‘very strong convergence’ at the following solution 

 

years 37.4eriod      902.0         008.0         :Cycle

0012.0      0        :Trend

0    :Irregular
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In words, this model implies that the trend is effectively a HP type (but with a 
different smoothing constant than the HP filter, see below) with no irregular component 
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and with a cycle that has a period somewhat longer than four years. In practice, this 
model is rather similar to the previous one, in which we were assuming that the series is 
just a HP trend plus a perturbational component about it, with the only difference that 
the smoothing constant for the HP filter is different. One may wonder whether the BSM 
model above is a sensible option or not in general, mainly because the model is initially 
specified including an irregular component, but the output is a model without it, 
meaning that a model has no stochastic noise added to it. 

The proposal of this paper is a mixture of the two models seen above , in which 
the cycle and an irregular components are explicitly introduced in the model. At the 
same time, the non-constant features of the cycle are directly addressed by means of the 
exact definition of the cycle in terms of a frequency band.  

The HP trend is set up in a regularisation framework in which smooth signal, the 
trend, is extracted from the data in a way such that the sum of squares of residuals are 
minimised subject to the constraint that the trend must have a certain level of 
smoothness. Such smoothness is controlled by a lagrange multiplier that is maintained 
at a value of 1600 for quarterly series. It has been demonstrated (e.g. see Pedregal, 1995 
and Young and Pedregal, 1996) that the HP filter is exactly equivalent to a simple UC 
model composed of an IRW trend plus an irregular component. In addition, it has been 
shown that the IRW  filter is effectively a low pass filter in which the bandwidth is 
controlled by the NVR parameter, that is exactly the inverse of the smoothing constant 
in the HP filter. In this way, the filtered series would contain all the information of the 
series in the defined frequency band, independently of the systematic or asystematic 
properties of the series. The exact formulae is 

 2
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Pedregal (1995) gives the exact formulae to calculate the bandwidth of the RW 
family filters as a function of the NVR parameter. Table 2 shows some examples for an 
IRW filter. 

 

NVR Period (Time samples) Years (quarterly series) Years (monthly series) 
10 2.86 0.71 0.24 
1 6.01 1.51 0.51 

0.1 11.02 2.76 0.92 
0.01 19.78 4.95 1.65 

0.001 35.28 8.82 2.94 
1/1600 39.69 9.92 3.31 
0.0001 62.81 15.71 5.23 

Table 2: Relation between the NVR parameter and the associated bandwidth of the IRW 
filter, i.e. minimum period of cycles include in filtered series. 

Based on table 2, if a filtered series has to be estimated in a way that contains all 
the information of the time series about 5 years and above, a NVR=0.01 would be the 
option for a quarterly series, while a NVR=0.0001 should be chosen for a monthly series. 
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Now, if an exact definition of the cycle is provided in terms of a frequency band, 
an estimation of such cycle may be obtained by the application of the IRW twice, in 
order to build a band pass filter. In the first pass a trend-cycle component would be 
obtained by applying the IRW filter with an appropriate NVR. In the second pass, the 
trend-cycle (or the original series) is filtered again in order to remove the low frequency 
information related to the trend and to get the cyclical information of the series. The 
result of such a process is a decomposition of the series in a low frequency trend; a 
cycle with constant or non-constant period depending on the properties of the series; 
and an irregular component that will not be white noise necessarily. 

For example, applying Burns and Mitchell (1946) definition of the cycle to the US 
GNP quarterly series, such component would contain the information of the series 
between 18 months (6 quarters) and 120 to 144 months (40 to 48 quarters). The 
proposed estimation of the cyclical component could be obtained in two steps, i.e. 

(1) Apply model (3) with NVR= 1. The filtered series would contain all the 
information of the series about 6 quarters and above (trend-cycle 
component). 

(2) Apply model (3) to the trend-cycle component in (1) or to the original 
series with NVR= 410*92.2 − . The filtered series would contain the 
information about 48 quarters (12 years) and above.  

The estimated cycle is the perturbation in (2), if (2) is applied to the trend-cycle 
component in (1), or the difference between the trends in (1) and (2), if (2) is applied to 
the original time series. The actual differences between applying (2) to the original series 
or to the trend-cycle in (1) are negligible. 

This method exhibits a number of advantages: 

• It relies on an explicit definition of the cycle based on a frequency band, instead 
of defining it as a residual (HP) or just one frequency or a narrow band around it 
(BSM). This may be seen as a matter of taste, and it is indeed so for the HP 
approach, but may be dangerous the definition of the cycle given by BSM for 
series with a non-constant period cycle.  

• It does not require any preprocessing of the data (e.g. variance stabilisation) that 
would be necessary in the BSM approach.  

• Exactly the same procedure, as it is without any addition, may be applied to 
seasonal data. The BSM model may be applied to such data with the (simple) 
addition of a seasonal component, but the cyclical component estimated by HP 
for seasonal data would incorporate the seasonal component, and the correction 
of this problem do not seem easy within the HP context at first sight. 

• An irregular component is always estimated from the data, avoiding this rare 
peculiarity of some UC methodologies. 

(INSERT FIGURE 5) 
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Figure 5 shows the application of the three alternatives (BSM, HP and IRW) 

mentioned in this subsection to the GNP series. It is clear from the plot that all are very 
similar, though the theoretical definition is quite different in each model: the BSM model 
produces a cycle that is effectively the information of the series of period about 3.47 
years; the HP filter assumes that the cyclical component incorporates the information of 
period less than 9.9 years (see table 2); while the IRW cyclical component is defined as 
the information of the series between 1.5 and 12 years. The logical consequence is that 
most of the information of this series is precisely contained in the band between 1.5 and 
10 years (approximately), while the rest of the frequencies are much less relevant. 
Because of this, differences among estimated cycles are expected if we play within this 
frequency band. 

The problem of figure 5 is the lack of smoothness that may induce to a number of 
oscillations superior to what one would like for the analysis of the cycle: some of them 
are indeed very short, some of them of very low amplitude, making difficult the 
detection of recessions and expansions. One possibility to solve such a problem is 
selecting a different bandwidth for the cycle components. For example, figure 6 shows 
some alternatives for different bandwidths, namely between 1.5 and 12 years (as in 
figure 5); 4 to 12 years and 6 to 12 years. 

The final choice of the frequency band is subjective because the conclusions about 
the cyclical oscillations are different. For example, given the definitions of the cycles in 
figure 6, the smoother estimate cannot see the cycles of period inferior to six years. This 
is the reason why this estimate considers one single cycle between years 1950 and 1958; 
1965 and 1971; 1984 and 1993; while the other estimates would consider the existence 
of two cycles within each of those dates. On the other hand, the least smooth cycle 
estimate consider a very short cycle between 1959 and 1961. In order to define a 
sensible bandwidth, other kind of analysis, typically recessions and expansions records 
made by experts in the field, become very relevant. 

(INSERT FIGURE 6) 

5. CONCLUSIONS 

This paper proposes new alternatives for the analysis of the economic cycles related to 
well-known generally available methods, but with a number of novel features. The 
analysis of the cyclical behaviour of time series fits naturally in the Unobserved 
Components (UC) models framework. From all the complex diversity of such methods, 
the one proposed in the main text is of the Structural form type. Two versions are 
proposed, based on the specific properties of the data at hand. 

Firstly, a Dynamic Harmonic Regression for those series that exhibit a constant 
period cycle. The relevance of such model is demonstrated with the monthly aggregated 
electricity consumption data in Spain. In this series, the forecasting performance of a 
model that includes a cycle (estimated objectively from the data) is considerable 
superior to other simpler univariate UC and ARIMA models. 
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Secondly, a double process of filtering for series with non-constant period cycles 
is proposed. It is based on a very simple UC model (just an Integrated Random Walk 
trend) that provides the estimation of the information content of the series within a 
frequency band that should be provided subjectively by the user. The results of such 
procedure compare very favourably with the Basic Structural Model and Hodrick-
Prescott trend modelling. 
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Figure 1: The Electricity consumption in Spain from January 1971 to April 2000, and 

estimated trend. 

 

 

 

 

 

 

 

 

 

Figure 2: Trend derivatives of alternative models: IRW trend in DHR model (wide 
solid); canonical decomposition trend in ARIMA model (thin solid); and LLT in BSM 

model (dotted). 
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Figure 3: AR spectrum of electricity consumption series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Relative forecasting performance for the electricity consumption series in 
Spain, based on MAPE measures. DHR seasonal plus cyclical model results (thick 
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solid); standard seasonal DHR model results (thin solid); BSM results (dotted); and 
ARIMA results (dashed). 

 

 

 

 

 

 

 

 

Figure 5: Three possible estimations of the cyclical component for the US GNP series: 
IRW filter (solid); HP (dashed) and BSM (dotted). 

 

 

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995

-200

-100

0

100

Estimated cycles for the US GNP

Cycles

 

Figure 6: Estimated cycles for the US GNP using the IRW approach for different 
bandwidths: from 1.5 years to 12 years (dashed); 4 to 12 years (dotted) and 6 to 12 years 

(solid). 


