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INTERNATIONAL ECONOMIC REVIEW
Vol. 9, No. 2, June, 1968

A SPECTRUM ANALYSIS OF THE
LONG-SWING HYPOTHESIS®

By E. PaiLir Howrey'

1. INTRODUCTION

THE LONG-TERM ECONOMIC GROWTH of the American economy over the past
century has frequently been characterized as expansion at a relatively con-
stant rate. It is widely accepted that for some purposes this is a useful
abstraction from the rather wide fluctuations observed in the annual growth
rate. In more detailed studies of the growth of the American economy, a
certain amount of interest has centered on the problem of isolating regular
fluctuations about the long-term average value of the rate of expansion.
Although some of the variation in the rate of growth is thought to be
accounted for by the ordinary business cycle, several studies have suggested
that the rate of growth accelerates and decelerates in a fairly regular
pattern of some twenty years duration. These long swings are considered to
be distinet from and independent of the shorter business cycle.

This paper applies the technique of spectrum analysis to the problem of
determining the statistical significance of long swings in the rate of growth
of output and other related macro-economic variables. In the next section
alternative methods of time series analysis are compared and the effect of
low-pass filtering operations is considered. The empirical results of the
study are presented in Section 3, and the main conclusions are summarized
in the final section.

2. TIME-SERIES ANALYSIS AND FILTERING OPERATIONS

The long-swing hypothesis is concerned with the existence of fluctuations
of duration ranging between fifteen and twenty-five years.? The hypothesis
has been formulated alternatively in terms of the level, rate of growth and
deviation from trend of various economic variables. The usual method
which is used to isolate long swings in a series is first to low-pass filter the
series in order to attenuate the short-run fluctuations and then to mark off

* Manuscript received November 3, 1965, revised April 18, 1966.

! This study was supported in part by National Science Foundation Grant NSF-
GS 551, and the computations were performed at the Princeton University Computer
Center which is supported by National Science Foundation Grant NSF-GP579. The
author wishes to thank the members of the Econometric Research Program at
Princeton University, especially M. D. Godfrey, S. M. Goldfeld and O. Morgenstern,
for their helpful comments.

2 Although Kuznets [16, (423)] suggests an average periodicity of twenty years
for the long swing, there is less than universal agreement on the duration of these
fluctuations. Abramovitz [3, (419)], on the basis of his study of U. S. data, suggests an
average duration of fourteen years for the long swing. For a discussion of some of
the difficulties involved in an attempt to specify precisely the duration of the long
swing, see Hatanaka and Howrey [12].
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the peaks and troughs in the filtered series. This chronology of peaks and
throughs together with an estimate of the amplitude of the swings is used
to determine whether the original series contains a long-swing component.

Apart from the subjectivity which is often involved in determining the
peaks and troughs of the series, there are two points which should be
considered in connection with this approach to the analysis of a time series.
First, the determination of the “period” of a time series by counting peaks
and troughs is but one of several alternative techniques which may be used
for this purpose. Second, and more important, the inference of a period in
the original series from estimates obtained from the filtered series may be
misleading.

These two points are developed in this section with the following approach:
First, the assumptions used throughout the paper are set out. Then four
different measures of periodicity are introduced and illustrated with reference
to a second-order autoregressive scheme. Finally, the effect of low-pass
filtering the series before estimating the periodicity is considered. The
major conclusion which emerges is that, in general, it is not valid to infer
that the period of oscillation which is isolated in a filtered series is identical
to the period of the original (unfiltered) series.

Assumptions and motation. Throughout this section it is assumed that
the series being analyzed is a realization {x; t=1,2,---,n} of a stationary
Gaussian process. The Gaussian assumption facilitates the computation of
expected value of the “period” of the time series. In order to derive what
is referred to below as the spectrum period of the process, the power
spectrum is introduced:?

(1) f(w>=2iﬂ ir(wcosws (—r=w=n),

3§=—oc0

where 7(s) denotes the autocovariance function of the process.
An example of a simple generating process which is used for illustrative
purposes in this section is the second-order autoregressive process

(2) 2 + @%i—y + bxi—z = & (a2 < 4b< 9),

where {e} is a sequence of normal random variables with mean zero and
variance s.. The inequalities guarantee that the characteristic roots of the
difference equation are complex and less than unity in absolute value. The
complete solution of (2) is given by*
(3) Xy = D'(A cos 0t + Bsin 0t) -+ Z Ejég.__,q.l ,
i=0
where
D=v'b,
6 = cos~(—a/2D),
£; = 2(4b — a?)% D7 sin j6 ,
3 A good introduction to spectral analysis is given in Granger and Hatanaka [11]

and Jenkins [13].
¢ This is discussed fully in Kendall [14].
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and A and B are constants determined by the initial conditions. The period
of the solution of the homogeneous part of (2), 2z/6, is referred to below as
the autoregressive period of the scheme. Since b < 1, the first term in the
solution approaches zero as ¢ increases so that asymptotically

(4) T= >, Siei—jer -

7=0
It is the periodicity of the sequence {x:} as determined by this last expression
which is considered for illustrative purposes.

Measures of periodicity. Consider now the problem of determining the
period of an observed time series {x.}. At least four ways of measuring
the period of a series are available. These include

(a) the mean-distance between peaks (troughs),

(b) the mean-distance between upcrosses (downecrosses),

(¢ ) the correlogram period and

(d) the spectrum period.

In general, the expected values of (a)—(d) differ from each other. Hence,
one’s findings may depend critically on the way in which periodicity is
measured. Since the empirical results of this study are presented in the
form of estimates of the spectrum, it is of interest to compare the spectrum
with the other three, more traditional, methods of characterizing a time
series.?

(a) The mean-distance between peaks. The expected mean-distance between
peaks, where a peak is said to occur at time ¢ if %, < %: = x¢vy, can be
determined in the following way. Let p denote the probability that z, is a
relative maximum (peak):

p:Pr{ltSO, /:t-i-lé }9

where

At = Lt—1 — Lt ,
1= Xt — L+ -
Then in a series of N observations, one would expect to find Np = n peaks.
The mean-distance between peaks is thus N/n = 1/p, i.e., the inverse of the
probability that x; is a peak. For a normal series p = cos™' z/2x where z is

the correlation between A, and 1,-;. In terms of the autocorrelation coef-
ficients of the original series, the mean-distance between peaks is given by

—1+ 20(1) — p(2)
2(1 — p(1))

where o(s) = 7(s)/(0) is the correlation between 2. and z..,. For the auto-
regressive process (2), the mean-distance between peaks is given by

’

(5) P, = 2r/cos! [

5 The following discussion of the mean-distance between peaks, mean-distance
between upcrosses, and the correlogram period is based on Kendall [15] to which
the reader is referred for a more detailed discussion and derivation.
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-0+ a2
—_ 1 S A
(6) P, = 2r/cos [2(1 o b)]'

(b) The mean-distance between upcrosses. An upcross is said to have
taken place between t —1 and ¢ provided .-, < ;2 < x;, where z is the mean
of the series. By an argument analogous to that given for the mean-distance
between peaks, the expected mean-distance between upcrosses is

(7) P, = 2r/cos~! o(1) .

For the autoregressive process this may be written as
8 3 2 -1 ,A——_a'_,,] .

(8) P, = 2r/cos [1 T

It is of interest to note that the mean-distance between upcrosses depends
only on the first-order autocorrelation of the series, whereas mean-distance
between peaks depends on the first- and second-order autocorrelation coef-
ficients of the series. Both of these measures are based on the probability
of occurrence of a given event (peak or upcross) so that the stochastic
nature of the series is explicitly taken into consideration. However, in these
definitions no subsidiary constraints such as conditions which have the effect
of reducing “ripple” have been imposed.® Although this limits to some
extent the applicability of these two measures to economic time series, they
are suggestive and lead to interesting comparisons with the correlogram
and spectrum periods.

(¢) The correlogram period. A third measure of the periodicity of a
series can be derived from the correlogram. In general, the correlogram
period is defined as the mean-distance between troughs (peaks) or downcrosses
(upcrosses) in the sequence of serial correlation coefficients. For the auto-
regressive process (2), the theoretical values of the serial correlation coef-
ficients are given by

(9) o(s) + ap(s — 1) + bo(s —2) =0 (s=1);

that is, the serial correlation coefficients are generated by the homogeneous
part of the difference equation. It follows that the correlogram oscillates
with a periodicity which is identical to the autoregressive period, namely,

(10) P3 = 27!/(!05"1 [—2;1/(1—3] .

The fact that the correlogram period is equal to the period of the solution
of the homogeneous part of the difference equation probably accounts for
the intuitive appeal of this measure.

(d) The spectrum period. The spectrum period is defined as the inverse
of the frequency at which the power spectrum exhibits a relative peak
(provided one exists). The power spectrum of the autoregressive process

6 An additional constraint on the mean-distance between peaks which has the effect
of reducing ripple, namely, #: = 2:4+4, has been discussed by Dodd [8].
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(2) is given by’

(11 folw) = 11 4 ae’e + bem2 |72 fulw) 0w,
or, equivalently, by
1’ (@) == B
(a1 il 27l + a* + b + 2ail -+ b) cos w + 2b cos Zw)
The theoretical spectrum of the autoregressive with o = —1.1, b=0.5 and

ot = is shown in Figure 1. This power spectrum exhibits a relative peak
at w = cos~! [—a(l + b)/4b], so that the spectrum period of the autoregressive
is®

(12) P, = 2n/cos™! [ fffffff ] ,

The interpretation of the spectrum period is relatively straightforward. It
is simply the inverse of the center frequency of that band of frequencies
which makes the largest contribution to the variance of the series.

In general, each of these measures of periodicity is different. The extent
to which these measures diverge from one another depends on the exact
nature of the generating process. With reference to the autoregressive
process, all four of these measures yield the same result if b =1, in which
case the process contains a deterministic component since the first term in
the general solution (3) does not damp out. With both a and b equal to
zero, {xt} is simply a random series. The mean-distance between peaks is

5.0
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2.0
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el o d o oh J
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#(t) — 1.1a(t — 1) + 0.52(t — 2) = (t)

7 The method by which this expression is obtained is described in Granger and
Hatanaka [11, (85-7)].

8 The expression for o is obtained by setting the derivative of fi(w) given in (11)
equal to zero and solving for w.
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three units of time and the mean-distance between upcrosses is four units
of time, both of which are well-known results. The correlogram does not
oscillate in this case since p(s) =0, (s > 0), and the power spectrum is flat
so that neither the correlogram period nor the spectrum period is defined in
this case. The values of the period as measured by each of these methods
are set out in Table 1 for different values of a and b of the autoregressive
process. From this table it is obvious that the period which is contained
in a time series depends critically on the way in which periodicity is defined
and measured.

TABLE 1

THEORETICAL PERIODICITY OF SERIES GENERATED BY
THE AUTOREGRESSIVE PROCESS (2)

-1.5 —-1.7 —1.615 —1.52 —-1.1
b 0.9 0.8 0.7 0.6 0.5
b, 7.90 8.69 7.36 6.43 4.96
P, 9.51 18.76 19.79 19.79 8.40
Py 9.53 19.85 23.73 32.31 9.25
P, 9.56 21.16 31.79 o 10.46

A tacit assumption underlying this discussion of measures of periodicity
is that the series under consideration consists of a sequence of fluctuations
which can be characterized by a single average periodicity. This does not
mean that each successive fluctuation must be exactly the same length, but
that the dispersion about the average is not so great that the average is
meaningless. Provided this assumption is satisfied, the empirical imple-
mentation of each of the measures of periodicity is straightforward. With
respect to the mean-distance between peaks (upcrosses), an obvious procedure
is to mark off the peaks (upcrosses) and then determine the average distance
between them. For the correlogram and spectrum, the theoretical serial
correlation coefficients could be replaced by their estimates.?

An economic time series, however, is not likely to satisfy such an as-
sumption for it implies that the series contains a single period. It is more
reasonable to assume that economic time series consist of superimposed
fluctuations, each of which can be characterized by an average periodicity.
Indeed, the long-swing hypothesis is specifically concerned with the existence
of a fluctuation which is longer in duration than and superimposed upon
the ordinary business cycle. With a series of superimposed variations, the
problem of decomposing the series into meaningful components immediately
arises. If, for example, periodicity is measured by the mean-distance between
peaks, it is necessary to establish a criterion that will enable the investigator
to distinguish between business-cycle peaks and long-swing peaks in the time
series under consideration. One method that has been used in this con-
nection, low-pass filtering, will now be considered.

® This is not the usual procedure which is used to estimate the spectrum.
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Filtering operations. In most earlier studies of the long-swing hypothesis,
an indirect method has been used to distinguish between long swings and
business cycles in the series of observations. The usual procedure involves
applying a low-pass filter to the original series in order to reduce or eliminate
short-run fluctuations.’® The filtered series is then analyzed as if it were
identical to the original series but with the high-frequency components
removed. A low-pass filter which has often been used in this connection is
the simple moving average of length 2m + 1

(13) Yt ———LZ x¢+k/(2m + 1) .

In this expression {y:} denotes the filtered series, and {x.} denotes the original
series. The effect of the filtering operation described by (13) on each of the
four measures of periodicity enumerated above will now be examined and
illustrated with reference to the autoregressive process (2).

Each of the measures of periodicity depends on the serial correlation
coefficients of the series which is being analyzed. The general form of the
autocovariance function of the filtered series obtained from an original
series by (13) is

(14) 7¥(s) =k§‘. @m+1—|kDrek +s),
where 7¥(s) and y*(s) denote, respectively, the autocovariance function of the
filtered and original series. Given the autocovariance function of the origi-
nal series, the filtered autocovariance and autocorrelation functions can be
obtained. The effect of the filtering operation on the periodicity of the
series is not, however, immediately apparent. A general argument in terms
of the spectrum is given below, but for the other three measures of perio-
dicity the effect of the filtering is merely suggested by referring to numerical
examples. For expository purposes it is assumed that the original series is
generated by the autoregressive scheme (2) and the filtered series is obtained
from (13). The period of the original and filtered series for various values
of the autoregressive coefficients o and b and different values of m, where
m determines the length of the filter, are set out in Table 2.1

This table suggests that the mean-distance between peaks, P;, and the
mean-distance between upcrosses, P, are both increased by the simple
moving average filter. For example, with a = —1.7 and b = 0.8, the theo-
retical mean-distance between peaks in the original series is 8.7, and the
mean-distance between upcrosses is 18.8 units of time. The expected mean-
distance between peaks in the five-item moving average of this series (m = 2)
is 15.3, while the mean-distance between upcrosses is 22.3 units of time.

10 For example, Kuznets [16] has used a low-order moving average filter to eliminate
short-run fluctuations from the series. Various studies of long-swing hypothesis in
which some filtering technique has been used are enumerated by Adelman [5].

11 The values for @ and b in this table are the same as those used in Table 1.
When m =0, the length of the filter is 2m + 1 =1 so that the filtered and original
series are identical.
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TABLE 2

PERIOD OF ORIGINAL AND FILTERED AUTOREGRESSIVE SERIES
FOR DIFFERENT VALUES OF a,b AND m

» a| -1.5 -1.7 ~1.615 ~1.52 1.1
j m

! b 0.9 0.8 0.7 0.6 0.5

0 7.9 8.7 7.4 6.4 5.0

» 2 9.6 15.3 14.6 13.6 8.6

Yl os 10.0 17.0 16.6 15.8 8.8

4 9.9 18.3 18.2 17.4 8.4

0 9.5 18.8 19.6 19.8 8.4

» 2 10.7 22.3 2.6 27.8 14.1

'los 12.4 24,2 28.5 31.6 17.7

4 16.7 26.5 31.7 35.5 20.5

P, 9.5 19.9 23.7 32.3 9.3

0 9.6 21.2 31.8 o 10.5

p 2 9.6 22.2 36.4 o 2.7

Yl s 9.8 22.2 44.4 o w0

4 o 23.6 80.0 o .

For higher-order moving averages (m = 3,4) the period of the filtered series
is somewhat longer in this example. It is apparent from this table that the
period of the filtered series is greater than the period of the original series,
at least for a certain range of values of a,b and m. This indicates that in
general it ts not wvalid to conclude that the period which is determined by
marking off peaks or wupcrosses in the filtered series is identical to the
period of the original series.

The correlogram period is not subject to this difficulty in the case of the
autoregressive process. The reason for this is that the autocorrelation coef-
ficients of the original series are generated by (7) which has as its solution!?

i sin (k8 + )

(15) olk) = Sin 7 ,
where
D=vb,
0 = cos~(—a/2D),
1+
tan ¥ = =% tan g .

According to (14) the autocorrelation coefficients of the filtered series are
linear combinations of the autocorrelation coefficients of the original series.
Since the autocorrelation coefficients of the original series all have the same

1z Cf. Kendall [15, (26)].
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period and the same damping factor, it follows thai the peried of oscillation
of the correlogram of the filtered series is the same zs that of the original
series.’* For this reason only cne number is given in Table 2 for the
correlogram period.

The spectrum period exhibits the same tendency as the mean-distance
between peaks when a moving-average filter is applied te a series. In this
case a general argument is much simpler to construct than in the preceding
cases. The power spectrum of the filtered series, fy(@), is related to the
power spectrum of the original series by

(16) fulw) = [ Glo) * fow) (—r=osn),

where G(w), the gain of the (2m + 1)-item moving average, is

an Glw) = 3 e/2m + 1)
The gain of a five-item moving average is shown in Figure 2. It is apparent
that the low frequencies are passed by the filter and the high frequencies
are rejected.

Suppose that the spectrum of the original series, f.(w), exhibits a peak at
w, l.e.,
a8) afle) | _ .

A

o e

The corresponding peak in the filtered series occurs at &, where @ is
determined by solving

(19) ) _ ) BLEDE o i)
or, equivalently, by solving
(19" %—@ - fz@)ﬂ%@ﬁ _

Since |G(w)|* is a positive but decreasing function of o for o < 2x/5, it
follows that dln|G(w)|*dw < 0 for 0 < w < 2n/5. Therefore the right-hand
side of (19’) is positive for v < 2z/5. In order for & to afford f.(w) a true local
maximum, df,(w)/de must be positive for » < & and negative for w >&. A
comparison of (18) and (19) indicates that @ < & provided & < 2x/5. If the
original series contains an important component of periodicity greater than
five units of time per ecycle, the filtered series will contain an important
component of duration longer than that of the original series.’* This point
is illustrated in Figure 3 which shows the theoretical spectrum of a five-item

moving average of the series generated by the autoregressive process with
a=—11and b= 0.5.

18 See, for example, Allen [6, (129-31)].

14 In general, a (2m + 1)-item moving average “shifts” peaks in the spectrum which
are located below 1/(2m + 1) cycle per period to still lower frequencies. It should
be noted that this has nothing to do with aliasing which is described by Blackman
and Tukey [7, (31-3)] and which is explored by Taubman [21] in connection with the
long-swing hypothesis.
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2(t) — L1z(t — 1) + 0.5x(t — 2) = &(?)

Summary. This discussion of the three measures of periodicity which are
not invariant with respect to filtering operations, namely, the mean-distance
between peaks, the mean-distance between upcrosses and the spectrum period,
suggests an important point in connection with the long-swing hypothesis.
Specifically, a major cycle with a periodicity of between eight and eleven
years in the original series may appear as a long swing with a periodicity
of between fifteen and twenty-five years in the filtered series. This point
is strikingly illustrated by the numerical results set out in Table 2. Since
several earlier studies of the long-swing hypothesis have used filters that
are identical or similar to those described above, the results of these studies
must be interpreted with extreme caution. In order to avoid the possibility
of drawing misleading inferences from estimates obtained from a filtered
series, it is necessary to consider the effect of the filter.

One of the distinct advantages of the spectrum-analytic approach to time-
series analysis is that this sort of adjustment problem can easily be handled.
In those cases in which a filter is used, the estimates of the spectrum can
be adjusted for the effect of the filter in a relatively straightforward way."
In many cases, however, it is not necessary to process the series in order
to eliminate the short cycles before proceeding with the estimation. In such
cases the relative importance of the long swing can be compared directly
with that of the major and minor business cycle.

3. SPECTRUM ESTIMATION AND THE LONG-SWING HYPOTHESIS
In this section the empirical results of this study presented in the form of

15 For a discussion of situations in which it might be advisable to filter the series
before proceeding with the estimation, see Blackman and Tukey (7, (39-13)].
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estimates of the spectral density functions of a number of macro-economic
time series are described. The particular form of the long-swing hypothesis
with which this study is concerned is the growth-rate variant. This choice
was made, in part, in view of the stationarity assumption of spectrum
analysis. While the absolute level of most economic variables cannot possibly
be considered to be generated by a stationary stochastic process because of
the dominant trend in mean, the sequence of growth rates is somewhat less
questionable.!®

Each of the series analyzed was first transformed by computing relative
rates of growth according to

(20) yt) = [t + 1) — 2]/t

where {x(t)} denotes the original series and {y(f)} denotes the series of growth
rates. The spectrum densities of the growth-rate series were then estimated
using a Parzen window.!” During the course of the investigation, spectrum
densities were estimated using 7T = 10, 20, 30, 40, 60 and 80 lags. As the
number of lags used in the estimation of the spectrum is increased, a
sharper resolution of the frequency axis is possible, but this is achieved at
the expense of an increase in the variance of the estimate. It was found
that the twenty-lag estimates described reasonably well the main features
of the spectra of the series dealt with here.

A number of previous investigators have suggested an average duration
of fifteen to twenty-five years for the long swing, with an average duration
of twenty years.'® In the following diagrams the frequency band which
corresponds to a fluctuation with an average periodicity of twenty years is
centered on the tenth frequency point ii.e., 107/100 radians per year on 1/20
cycle per year;. The long-swing hypothesis can be interpreted as stating
that the variance-contribution of this band of frequencies is significantly
greater than that of neighboring frequency bands. This intuitive statement
of the hypothesis suggests that its rejection be based on the absence of a
local peak in the spectrum near this long-swing frequency. For the use of
the estimated spectrum as a descriptive statistic, this statement of the
hypothesis seems to be adequate. However, a more precise formulation of
the hypothesis in terms of conventional tests of significance is possible. The
100(1 — 2a) per cent confidence band for normally distributed independent
random variables, referred to as white noise, can be determined from

Pr {Zf—a(h < = < zi(l)} =1—2a,

16 Adelman [5] has experimented with residuals from a log-linear trend. Although
this transformation might be expected to eliminate the trend in the mean, the trace
of the residual series suggests that the variance of the residuals is not stationary.
The non-stationarity of the growth rate series is in most instances less conspicuous,
although perhaps no less real.

17 The estimation procedure which was used here is that described by Parzen [20].

18 See, for example, Kuznets [16] and Lewis and O’Leary [19].
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where [, the equivalent degrees of freedom of each estimate, is determined
by dividing the number of observations used in the estimation of the spectrum
by T/4 (i.e., l=4n/T). These confidence limits provide a method for testing
the hypothesis that the underlying process is random. Specifically, an esti-
mate which lies outside the (100 — 2a) per cent confidence limits is said to
be significantly different from white noise at that level.

The general features of the spectral density functions estimated with
T =20, 30 and 40 are set out in Table 3. For each truncation point used in
the estimation, the location of the relative peaks in terms of years per cycle
(ype) and the estimated peak value are given. For expository purposes, the
relative peaks are grouped in the table according to their location: 15-co
years per cycle, 9-15 ype, 5-9 ype, 3-5 ype, and 2-3 ype. The first number
in each column indicates the center of the band in which the spectrum ex-
hibits a relative peak. Where no number is shown, the spectrum does not
exhibit a relative peak in the band. The peak value of the spectrum is
shown directly below the location figure. A single (double) underscore denotes
peaks which are significantly different from the spectrum of white noise at
the 90 per cent (95 per cent) confidence level.

For example, the spectrum of Gross National Product series estimated
with twenty lags exhibits local peaks in the bands centered on 11.8, 5.6 and
3.4 years per cycle. These fluctuations have relative amplitudes of 0.48, 0.78
and 0.77 respectively, none of which lies outside the upper 90 per cent white
noise confidence limit. - This summary presentation facilitates a comparison
of spectrum estimates which differ from one another in the focussing power
of the window used in their estimation.

The results of the estimation are shown in graphical form in Figures 4-17
for the truncation point 7'=20. As suggested above, the twenty-lag estimates
adequately reflect the general features of the thirty- and forty-lag estimates,
so only the twenty-lag estimates are shown in graphical form. In addition
to the estimated spectrum, the trace of the relative rate of growth of each
series is also shown. These are included as a basis for making some
judgment about the stationarity of the series from which the spectrum is
estimated.® :

19 It will be noted that in the growth-rate series there are several extreme
values. These are particulary evident in gross capital formation and gross nonfarm
residential construction, for example. In order to determine whether the shape of
the estimated spectrum is largely the result of these extreme values, two types of
outlier adjustment procedures were employed. In both procedures an outlier is
defined as an observation which lies more than k standard deviations from the mean
of the series. In the first procedure the outlier is adjusted to lie exactly k standard
deviations from the mean. In the second procedure the outlier is replaced by a
linear interpolate between the two adjacent “inliers.” The power spectra of these
adjusted series were then estimated. With k =2, the estimates of the spectrum
density retained their original shape, except in the case of Inventory Investment
which became almost flat. These outlier adjustment experiments, while not con-
clusive, do suggest that the estimates are not entirely due to the existence of ex-
treme values in the series.
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TABLE 3
GENERAL FEATURES OF THE SPECTRUM ESTIMATES*

Series Location and value of spectrum peaks
(Variance) Number of lags -
15- ypc| 9-15ype | 5-9ype| 3-5ypc | 2-3ype
2 duration 11.8 5.6 3.4
Gross amplitude 0.48 0.78 0.77
1 national 30 duration 11.1 5.6 3.4 2.4
product amplitude 0.52 0.90 0.94 0.41
(0.0047) 4 duration | 20.0 10.5 5.7 3.4 2.5
amplitude | 0.47 0.56 0.97 1.08 0.46
2 duration 11.1 5.6 3.3 2.4
Net amplitude 0.42 0.73 0.87 0.44
2 national 30 duration 10.5 5.6 3.3 2.5
product amplitude 0.46 0.87 1.03 0.53
(0.0069) 4 duration | 18.2 10.0 5.7 3.4 2.5
amplitude 0.38 0.51 0.97 1.17 0.62
2 duration 7.1 3.4
q amplitude 0.82 0.83
Industrial . a7
. duration 12.5 6.7 3.4 2.8
3 production |30 amplitude 0.59 0.94 1.05 0.66
40 duration 13.3 6.5 3.4 2.8
amplitude 0.63 1.04 lﬁli 0.74
20 duration 6.2 3.4 2.8
amplitude 0.60 0.96 0.69
Pig iron duration 13.3 6.2 3.4 2.7
4 pfg%‘gﬁf{;’" 30 amplitude 0.44 0.72 1.26 0.83
40 duration 14.3 6.2 3.4 2.7
amplitude 0.48 0.82 1.56 0.94
20 duration 25.0 5.7 3.6 2.5
Flow of amplitude 0.60 0.54 0.52 0.62
- goods to 30 duration 22.2 9.5 5.7 3.6 2.5
consumers amplitude 0.68 0.43 0.60 0.62 0.80
(0.0025) s duration | 22.2 9.5 5.9 3.4 2.5
amplitude 0.77 0.46 0.65 0.67 0.93
20 duration 10.5 5.6 3.3 2.3
amplitude 0.72 0.81 0.84 0.36
Consumers’ duration 10.5 ;g 3??3— 2.4
6 dmpss |* amplitude 0.90 | 0.94 | 1.05 | 0.40
40 duration 28.6 11.1 5.7 3.4 2.4
amplitude | 0.26 1.05 1.02 1.12 0.43

* The sources of the various series are given at the end of the table. The value
in parentheses following the description of the series is an estimate of the variance.
Amplitudes with a single (double) underscore are peaks in the spectrum which are
significantly different from white noise at the 90 per cent (95 per cent) confidence level.

Source: The -data used in this study, with the exception of the Index of In-
dustrial Production and Pig Iron Production, are the annual estimates underlying
the series published in Kuznets [16]. Where more than one estimate was available,
Kuznets’ Variant III was used. The series are expressed in constant (1929) dollars

(Continued on mext page)



SPECTRUM ANALYSIS

241

TABLE 3
(Continued)
Series Location and value of spectrum peaks
(Variance) Number of lags
15-o0 ype| 9-15ype | 5-9ype | 3-5ypec| 2-3ope
20 duration 16.7 5.1 3.2 2.4
Consumers’ amplitude 0.55 0.56 0.53 0.65
7 semi- 30 duration 16.7 5.0 3.3 2.5
durables amplitude 0.66 0.65 0.62 0.75
(0.0048) |, duration | 16.7 6.9 5.0 3.3 2.5
amplitude 0.74 0.42 0.72 0.70 0.82
20 duration 5.7 3.2 2.2
Gross amplitude 1.04 0.63 0.38
capital 30 duration 11.1 5.4 3.2 2.2
formation amplitude 0.69 1.23 0.71 0.41
©.057) |,  duration 11.1 5.6 3.1 2.2
amplitude 0.73 1.33 0.77 0.42
20 duration 7.1 3.4 2.1
Gross amplitude 1.13 0.87 0.18
producers’ 30 duration 22.2 7.7 3.4 2.2
durables amplitude 0.31 1.24 1.16 0.18
(0.0412) 4 duration | 22.2 8.0 3.4 2.2
amplitude 0.36 1.32 1.42 0.19
20 duration 11.8 3.4 2.3
Grgss amplitude 0.98 0.43 0.46
nonfarm . T
s : duration 11.8 5.6 3.5 2.4
10 residential =\ 30 ymplitude 1.14 0.61 0.46 0.48
(0.1440) 40 duration 12.5 5.3 3.5 2.4
amplitude 1.25 0.63 0.51 0.54
20 duration 20.0 4.1 2.3
I amplitude 0.65 0.89 0.66
Inventory duration | 20.0 10.0 12 2.3
1 investment 130 amplitude | 078 | 0.47 107 | 070
40 duration 20.0 9.5 4.2 2.4
amplitude 0.92 0.53 1=25 0.76
20 duration 10.5 5.4 3.4
amplitude 0.55 0.85 0.70
GNP per duration 10.5 5.6 3.4 2.4
St 80 amplitude 0.52 0.91 0.96 0.42
40 duration 20.0 10.5 5.7 3.4 2.5
amplitude 0.50 0.56 0.98 1.10 0.47

and cover the period 1869-1955. The Index of Industrial Production with 1929 as the
base year was constructed by splicing three series:
for Manufacture [10, (54)] covering the period 1860-1914; Fabricant’s Index of Output
of Manufacturing Industries [9, (44)] covering the period 1915-1918; and the Federal
Reserve Board’s Index of Industrial Production [22 and 23] covering the period 1919-
1960. The Pig Iron Production series was taken from ([24] for the years 1860-1945

and from [25] for the years 1946-1961.

Frickey’s Index of Production

Permission by S. Kuznets and the National

Bureau of Economic Research to use these series is gratefully acknowledged.
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TABLE 3
(Continued)
Series Location and value of spectrum peaks
(Variance) Number of lags
15~ ype!| 9-15ype | 5-9 ype | 3-5 ype | 2-3 ype
2 duration 10.5 5.4 3.4
- amplitude 0.55 0.85 0.70
13 CNP.per | duration 10.5 5.6 3.4 2.4
©.0046) amplitude 0.67 1.01 0.85 0.43
40 duration 22.2 10.5 5.7 3.4 2.4
amplitude 0.34 0.76 1.09 0.97 0.40
o9  duration 0 3.5 2.3
= amplitude 4.60 0.10 0.03
14 Population ! 30 duration oo 10.5 4.9 3.5 2.3
(0.00003) . amplitude 5.96 0.73 0.08 0.12 0.03
10 duration ) 10.0 4.9 3.5 2.3
amplitude 3.87 0.82 0.09 0.13 0.03

A comparison of the spectra which relate to national income and production
with the spectra of the consumption and investment components of national
sroduct reveals several interesting points. The spectra of the income and
nroduction series (1-4 in Table 3) shown in Figures 4-7 exhibit major peaks in
the ranges [5.6-7.1] and [3.3-3.4] years per cycle (ypc).2® The latter peak which
corresponds to the well known forty-month cycle is the more prominent of
the two, at least in the Net National Produect and Pig Iron Production series.
Relatively weak peaks emerge in the intervals [10.0-14.3] and [2.4-2.8] ype. Only
when the truncation point is increased to 40 does anything remotely resembling
a long swing emerge in these series; and then only in the GNP and NNP series.
The long swing seems to be entirely absent from the two production series.

The estimates derived from the series relating to aggregate consumption
(5-7 in Table 8), shown in Figures 8-10, are interesting in several respects.
The spectra of the total consumption and consumers’ semi-durables series
are very weak (i.e., not statistically different from the spectrum of white
noise) but do exhibit a relative peak in the [16.7-25.0] ypc range. The
spectrum of the consumers’ durables series is much like that of the income
series in that relatively strong peaks emerge in the ranges [5.6-5.7] and
[8.3-3.4] ype. The major difference is that the major cycle of periodicity
[10.5-11.1] ype is much more pronounced in the consumers’ durables series
than in the income series. All this agrees reasonably well with the accepted
notions about the volatility of the various components of consumption ex-
penditure. The curious thing about these series is the emergence of a weak

20 The notation [pi-pz] is used to denote the location of the relative peaks in the
set of series under consideration. The value p; is the shortest duration at which
the spectrum exhibits a relative peak over all the estimates of all the series, and
p: is the longest duration over all the estimates of all the series in the group. The
grouping of the relative peaks in this way is to a certain extent arbitrary, but the
overall picture is relatively clear.
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long-swing peak in the total consumption and consumers’ semi-durable series
when there is no corresponding concentration of power in this neighborhood
in the income series.

The spectral estimates of the investment series 8-11 in Table 3) shown in
Figures 11-14 are interesting in several respects. The gross investment
series, although similar to the production series (Figures 6-7) in terms of
the location of the spectral peaks, is more strongly influenced by a [5.4-5.7]
year fluctuation than are the production series. The gross producers’ durables
series exhibits important [7.1-8.0] and 3.4 ypc peaks and a very weak long-
swing peak centered on 22.2ype. The gross nonfarm residential construction
series exhibits the highly publicized long building cycle, although the perio-
dicity of [11.8-12.5] ype is somewhat shorter that that of previous estimates.
It is very interesting to note that this frequency band contributes more than
twice as much as any other to the variance of the series. The inventory
investment series is interesting for two reasons. The periodicity of the
business-cycle component emerges as 4.1-4.2 ype, almost 0.5 ypc longer than
in the other series. This is very curious in that a considerable amount of
the explanation of business cycles, at least recently, has been centered around
the inventory adjustment process.> The other interesting property of the
inventory series is that, like the consumption series, it exhibits a long-swing
peak.

The estimated spectra for GNP per worker and GNP per capita (Figures
15-16, closely resemble the spectrum of the GNP series. This is not particu-
larly surprising in view of the fact that the spectrum of total population
Figure 17) closely resembles that of the GNP series except for the consider-
able amount of power concentrated near the zero frequency. As can be seen
from the trace of the relative rate of growth of population, this concentration
of power is probably due to the downward trend in mean. In order to ex-
plore this possibility, a linear trend was removed from the rate of growth
of population. Even after detrending there remains a considerable concen-
tration of power in the low-frequency end of the estimated spectrum.

4. CONCLUSION

In this paper the growth-rate variant of the long-swing hypothesis has
been explored. In order to determine the relative importance of long swings
in the relative rate of growth, spectrum densities of a number of macro-
economic variables were estimated. These estimates, while not providing a
definitive answer to the question of the existence of the Kuznets cycle, do
nothing to dispel the skepticism which has been voiced in connection with
the long-swing hypothesis. The spectrum peaks which do emerge in the
long-swing frequency band are in most cases extremely weak; in no case
are they statistically significant.

2t This unexpected result may very well be explained by the inadequacy of the
inventory investment series, especially during the earlier years of the series. Also,
as mentioned in footnote 19, the estimated spectrum becomes flat when outliers are
adjusted.
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The estimated spectra do indicate that historically there have been relatively
regular fluctuations in the rate of growth of aggregate activity which have
been longer in duration than the ordinary business cycle. It does not seem
to be possible to dismiss these fluctuations as purely random events in the
sense that the spectrum peaks arise from sampling variability or from the
existence of extreme values in the growth rate series. It was suggested that
these longer fluctuations fit more conveniently into the major-cycle category
than the long-swing category. These estimates, together with the observation
that the usual filtering methods can “shift” a major-cycle peak into a long-
swing peak in the power spectrum, tend to cast some doubt on the existence
of long swings in the historical rate of growth of aggregate output in the
U. S. economy.

Princeton University, U. S. A.
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